Semantics analysis model based on deep learning for vessel traffic service application
نویسندگان
چکیده
Vessel Traffic Service (VTS) significantly improves the navigation efficiency of ports. This paper proposes a model called Joint Extraction Triples from VHF Speech (JER-VHF) to ensure VTS. Numerous texts are extracted Very High Frequency (VHF) speech communication contents and these organized into dataset named VHFDT. The proposed model's transforming task transforms voice this triple representation. VHFDT has large number overlapping triples. Therefore, combined with three categories entity relations in sentences, including pre-training Chinese language for initializing embedding VHFDT, BiLSTM rich features, Multi-head Attention focusing on In experimental part, study uses Precision(P), Recall(R), F1 evaluate accuracy effectiveness method baseline models. According results, efficiently extracts key information complex environment achieves better work relational extraction than other achieved an F1-score 83.2% testing data, which is improvement 1.8% compared second-best model.
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولmortality forecasting based on lee-carter model
over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...
15 صفحه اولEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملTraffic Analysis with Deep Learning
Recent advances in learning Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art classifiers across a wide range of applications, with little or no feature engineering. In this paper, we broadly study the applicability of deep learning to website fingerprinting. We show that unsupervised DNNs can be used to extract l...
متن کاملA Deep Learning Model for Traffic Flow State Classification Based on Smart Phone Sensor Data
This study proposes a Deep Belief Network model to classify traffic flow states. The model is capable of processing massive, high-density, and noise-contaminated data sets generated from smartphone sensors. The statistical features of Vehicle acceleration, angular acceleration, and GPS speed data, recorded by smartphone software, are analyzed, and then used as input for traffic flow state class...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Iet Intelligent Transport Systems
سال: 2023
ISSN: ['1751-9578', '1751-956X']
DOI: https://doi.org/10.1049/itr2.12398